LIVEMAIL FORMAT DESCRIPTION VERSION 6 -2-
HEADER -2-
FORMAT SIGNATURE -2-
VERSION -2-
STREAM SIZE -2-
EVENTS -3-
TAGS -3-
BASIC EVENTS -4-
CHANGEL OCALE (PREFIX 6) -4-
SET QURSORPOSITION (PREFIX 7) -4-
BACKSPACE (PREFIX 8) -4-
TAB (PREFIX 9) -4-
NEW LINE (PREFIX 13) -4-
DELETEBLOCK (PREFIX 30) -4-
DELETE (PREFIX 31) -4-
REMAINING(WITH PREFIXES>= 32) -4-
TIMELINE -5-
SAMPLE DECODER IN PSEUDO-CODE -6-

LiveMail Format Description version 6

Header

Format header consists of 3 parts: format signature, version info and datastream size field. They
are explained below.

Format signature

To determine if it isa valid LiveMail data or not, you should check the first unsigned long value
(4 bytes). Correct signature is 1802128716 (decimal), other values are invalid.

Ver si on

The rext unsigned short (2 bytes) value is format version. Current format has version 6.

Stream si ze

Stream size if single unsigned long (4 bytes) value, specifies size of data stream in bytes.

Dat astr eam
Datastream is sequence of eventsand tags, with no delimiters or any other specia data.

Event is arecord, that affects target mail text.
Tag isarecord, that affects only decoding process.

Event s

Every event has its own data (event-specific) and a timestamp. Timestamp aways follows event
data and specifies delta time from previous event (or beginning of therecording). Size and
precision of timestamp (in bytes) depends on current time mode.

There are 3 types of events:

? Basic. They arerecorded in stream without any prefixesand every event isessential to
play for getting a correct message.

? Extended essential. They are recorded with prefix O (one byte prefix). If the playing
engine finds such an event, it will play it anyway or stop playing.

? Extended skipable. They are recorded with prefixes 1 and 2 (short and long data events).
Can be skipped by playing engine if it isimpossible to play such event. To skip such
event, player need to know its size, so next stream data specifies length of event data
(without timestamp). If event prefix equals 1, then size field is 1-byte (unsigned). If event
prefix equals 2, then size field is 4-bytes unsigned long. After sizefield, there is unsigned
byte “number of placeholders’ field. If player engine does not support such event, it
should replace its output with “number of placeholders’ characters (for example, spaces).

(Actually, there are no defined extended event typesin version 6format. Now an older version
player can open newer format files using this information).

Tags

Tags are divided into 2 groups: basic and extended. All extended tags have prefix 3. Format v6
has no extended tags, they are for expansibility purposes only.

There are 2 basictypes of tags in format ve6:

? Long-wait tag (prefix 4). Equalsto aNOP event with a double-sized timestamp field and
no dataat all. All long pauses are implemented using this tag.

? St timeline modetag (prefix 5). Has no timestamp, only 1-byte data field. The rew
timeline mode should be determined using 1-byte data field:
0 — economic (1 byte per timestamp)
4 — low-res (1 byte per timestamp)
1 —high-res (2 bytes per timestamp)

Note, that first 2 bites of timeline mode specifies ((timestamp size in bytes) — 1) value.
This fact can be used to decode unknown timeline modes.

Basi ¢ events

ChangelLocal e (prefix 6)

Sets new input locale. Has single unsigned long (4 bytes) data field, containing corresponding
input locale.

Set Cur sor Position (prefix 7)

Sets new cursor caret position to write from. Position is unsigned long (4 bytes) value in chars,
measured from beginning of atext (new line characters are smple characters).

Backspace (prefix 8)

N o-data event. Just pressure of “Backspace” key.

Tab (prefix 9)

N o-data event. Just pressure of “Tab” key.

NewLi ne (prefix 13)

“Enter” key pressed. No additional datain stream.

Note: NewLine adds indissoluble 2-char sequence into text. This means, that cursor position is
incremented by 2, when NewLine event occurs, but it is impossible to delete only one of
NewLine chars — they are to be deleted simultaneously.

Del et eBl ock (prefix 30)

“Delete’ key pressed N times with no delta time between pressures. N is unsigned long (4 bytes)
field of thisfield.

Del ete (prefix 31)

“Delete” key pressed, also no additional data.

Remai ning (with prefixes >= 32)

Remaining prefixes are characters itself. Character event has no prefix — it contains only data.

Ti mel i ne

All events have timestamp values — delta time from previous events or the beginning of the
message.
These timestamps depend on current timeline mode:

? Economic: timestamp size is unsigned byte (1 byte) and is measured in 1/10 sec.

? Low-res: timestamp size isunsigned byte (1 byte) and is measured in /100 sec.

? Highres: timestamp size is unsigned short (2 bytes) and is measured in 1/2000 sec.

Default mode for player is economic.

Sanpl e decoder in pseudo-code

uint32 signature = uint32read();

uint1l6 version = ui nt 16r ead() ;
ui nt 32 sizeOrBuffer = ui nt 32r ead();
i f(signature! = 1802128716) return -1;
i f(versi on==6) /I checki ng version
{
while(! endO Buf f er Reached())
{ //analizing
switch(currentByte)
{
case 0: //essental extended conmmand - not inpleneted yet
return -1,
br eak;
case 1: /I ski pabl e extended snmall conmand - skipping it

newEvent = new NOPEvent ();
ski pByte();

toSkip = uint8read();
dummyCount = ui nt 8read();

newEvent = new | nsert DumyChar s(dummyCount) ;

ski pByt es(t oSki p) ;
readEvent Del ta();
br eak;

case 2: /] ski pabl e extended | arge command - skipping it

newEvent = new NOPEvent ();
ski pByte();

toSkip = uint32read();
dummyCount = ui nt 8read();

newEvent = new | nsert DumyChar s(dummyCount) ;

ski pByt es(t oSki p) ;
readEvent Del ta();
br eak;

case 4: //wait long tag - tinmestanp size is 2x usual

ski pByte();
newEvent = new NOPEvent ();
readLongWai t Del ta();
br eak;
case 5: /I new tinenode tag
ski pByte();
current Ti neMode = uint8read();
br eak;
case 6: /I change | ocal e
ski pByte();

newEvent = new Set Local eEvent (ui nt 32read());

readEvent Del ta();
br eak;

case 7: /] set new pos
ski pByte();

newEvent = new Set Positi onEvent (uint32r());

readEvent Del ta();
br eak;
case 8: / I backspace
ski pByte();
newEvent = new KeyEmuEvent (VK_BACK) ;
readEvent Del ta();
br eak;
case 9: /ltab
ski pByte();
newEvent = new Print Char Event (9);
readEvent Del ta();
br eak;
case 13: /lenter
ski pByte();
newEvent = new KeyEnuEvent (VK_RETURN) ;
readEvent Del ta();
br eak;

case 30: /] del et ebl ock
ski pByte();
newEvent = new KeyEnuEvent _Repeat ed(VK_DELETE, uint 8read());
readEvent Del ta();
br eak;

case 31: [/ del ete
ski pByte();
newEvent = new KeyEmuEvent (VK_DELETE);
readEvent Del ta();
br eak;

defaul t: /lit is printchar (non-unicode!) event
newEvent = new Print CharEvent (uint8r());
readEvent Del ta();

